Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Astrobiology ; 23(12): 1348-1367, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38079228

RESUMO

Democratizing genomic data science, including bioinformatics, can diversify the STEM workforce and may, in turn, bring new perspectives into the space sciences. In this respect, the development of education and research programs that bridge genome science with "place" and world-views specific to a given region are valuable for Indigenous students and educators. Through a multi-institutional collaboration, we developed an ongoing education program and model that includes Illumina and Oxford Nanopore sequencing, free bioinformatic platforms, and teacher training workshops to address our research and education goals through a place-based science education lens. High school students and researchers cultivated, sequenced, assembled, and annotated the genomes of 13 bacteria from Mars analog sites with cultural relevance, 10 of which were novel species. Students, teachers, and community members assisted with the discovery of new, potentially chemolithotrophic bacteria relevant to astrobiology. This joint education-research program also led to the discovery of species from Mars analog sites capable of producing N-acyl homoserine lactones, which are quorum-sensing molecules used in bacterial communication. Whole genome sequencing was completed in high school classrooms, and connected students to funded space research, increased research output, and provided culturally relevant, place-based science education, with participants naming three novel species described here. Students at St. Andrew's School (Honolulu, Hawai'i) proposed the name Bradyrhizobium prioritasuperba for the type strain, BL16AT, of the new species (DSM 112479T = NCTC 14602T). The nonprofit organization Kauluakalana proposed the name Brenneria ulupoensis for the type strain, K61T, of the new species (DSM 116657T = LMG = 33184T), and Hawai'i Baptist Academy students proposed the name Paraflavitalea speifideiaquila for the type strain, BL16ET, of the new species (DSM 112478T = NCTC 14603T).


Assuntos
Exobiologia , Instituições Acadêmicas , Humanos , Havaí , Genômica , Bactérias
2.
Front Microbiol ; 14: 1236471, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37854331

RESUMO

Growing concerns exist regarding human ingestion of contaminated seafood that contains Vibrio biofilms on microplastics (MPs). One of the mechanisms enhancing biofilm related infections in humans is due to biofilm dispersion, a process that triggers release of bacteria from biofilms into the surrounding environment, such as the gastrointestinal tract of human hosts. Dispersal of cells from biofilms can occur in response to environmental conditions such as sudden changes in temperature, pH and nutrient conditions, as the bacteria leave the biofilm to find a more stable environment to colonize. This study evaluated how brief exposures to nutrient starvation, elevated temperature, different pH levels and simulated human media affect Vibrio parahaemolyticus and Vibrio vulnificus biofilm dispersal and processes on and from low-density polyethylene (LDPE), polypropylene (PP), and polystyrene (PS) MPs. Both species were able to adequately disperse from all types of plastics under most exposure conditions. V. parahaemolyticus was able to tolerate and survive the low pH that resembles the gastric environment compared to V. vulnificus. pH had a significantly (p ≤ 0.05) positive effect on overall V. parahaemolyticus biofilm biomass in microplates and cell colonization from PP and PS. pH also had a positive effect on V. vulnificus cell colonization from LDPE and PP. However, most biofilm biomass, biofilm cell and dispersal cell densities of both species greatly varied after exposure to elevated temperature, pH, and nutrient starvation. It was also found that certain exposures to simulated human media affected both V. parahaemolyticus and V. vulnificus biofilm biomass and biofilm cell densities on LDPE, PP and PS compared to exposure to traditional media of similar pH. Cyclic-di-GMP was higher in biofilm cells compared to dispersal cells, but exposure to more stressful conditions significantly increased signal concentrations in both biofilm and dispersal states. Taken together, this study suggests that human pathogenic strains of V. parahaemolyticus and V. vulnificus can rapidly disperse with high cell densities from different plastic types in vitro. However, the biofilm dispersal process is highly variable, species specific and dependent on plastic type, especially under different human body related environmental exposures.

3.
Front Microbiol ; 14: 1216591, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37799600

RESUMO

Members of the archaeal order Caldarchaeales (previously the phylum Aigarchaeota) are poorly sampled and are represented in public databases by relatively few genomes. Additional representative genomes will help resolve their placement among all known members of Archaea and provide insights into their roles in the environment. In this study, we analyzed 16S rRNA gene amplicons belonging to the Caldarchaeales that are available in public databases, which demonstrated that archaea of the order Caldarchaeales are diverse, widespread, and most abundant in geothermal habitats. We also constructed five metagenome-assembled genomes (MAGs) of Caldarchaeales from two geothermal features to investigate their metabolic potential and phylogenomic position in the domain Archaea. Two of the MAGs were assembled from microbial community DNA extracted from fumarolic lava rocks from Mauna Ulu, Hawai'i, and three were assembled from DNA obtained from hot spring sinters from the El Tatio geothermal field in Chile. MAGs from Hawai'i are high quality bins with completeness >95% and contamination <1%, and one likely belongs to a novel species in a new genus recently discovered at a submarine volcano off New Zealand. MAGs from Chile have lower completeness levels ranging from 27 to 70%. Gene content of the MAGs revealed that these members of Caldarchaeales are likely metabolically versatile and exhibit the potential for both chemoorganotrophic and chemolithotrophic lifestyles. The wide array of metabolic capabilities exhibited by these members of Caldarchaeales might help them thrive under diverse harsh environmental conditions. All the MAGs except one from Chile harbor putative prophage regions encoding several auxiliary metabolic genes (AMGs) that may confer a fitness advantage on their Caldarchaeales hosts by increasing their metabolic potential and make them better adapted to new environmental conditions. Phylogenomic analysis of the five MAGs and over 3,000 representative archaeal genomes showed the order Caldarchaeales forms a monophyletic group that is sister to the clade comprising the orders Geothermarchaeales (previously Candidatus Geothermarchaeota), Conexivisphaerales and Nitrososphaerales (formerly known as Thaumarchaeota), supporting the status of Caldarchaeales members as a clade distinct from the Thaumarchaeota.

4.
Front Microbiol ; 14: 1208961, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744918

RESUMO

Aflatoxins, a family of fungal secondary metabolites, are toxic and carcinogenic compounds that pose an enormous threat to global food safety and agricultural sustainability. Specifically agricultural products in African, Southeast Asian and hot and humid regions of American countries suffer most damage from aflatoxin producing molds due to the ideal climate conditions promoting their growth. Our recent studies suggest that Vibrio gazogenes (Vg), an estuarine bacterium non-pathogenic to plants and humans, can significantly inhibit aflatoxin biosynthesis in the producers. In this study, we investigated the mechanism underlying Vg-dependent aflatoxin inhibition using the prominent aflatoxin producer, Aspergillus flavus. We show that aflatoxin inhibition upon Vg treatment was associated with fungal uptake of Vg-prodigiosin, a red pigment, which was consistently visible inside fungal hyphae during treatment. The association of prodigiosin with aflatoxin inhibition was further evident as Serratia marcescens, another prodigiosin producer, significantly inhibited aflatoxin, while non-producers like Escherichia coli, Staphylococcus aureus, Vibrio harveyi, and Vibrio fischeri did not. Also, pure prodigiosin significantly inhibited aflatoxin biosynthesis. Endocytosis inhibitors, filipin and natamycin, reduced the Vg-prodigiosin uptake by the fungus leading to a significant increase in aflatoxin production, suggesting that uptake is endocytosis-dependent. The Vg treatment also reduced hyphal fusion (>98% inhibition) and branching, which are both endosome-dependent processes. Our results, therefore, collectively support our theory that Vg-associated aflatoxin inhibition is mediated by an endocytosis-dependent uptake of Vg-prodigiosin, which possibly leads to a disruption of normal endosomal functions.

5.
ACS Infect Dis ; 9(9): 1769-1782, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37535907

RESUMO

We report facially amphiphilic bile acid-based antimicrobials with a broad spectrum of activity against both bacterial and fungal pathogens and negligible detrimental effects on mammalian cells. Two lead compounds eliminated dormant subpopulations of various bacterial species, unlike conventional antibiotics. The lead compounds were also effective in eradicating biofilms of methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, and Candida albicans. Additionally, these compounds substantially inhibited the formation of fungal biofilms (C. albicans). Mechanistic investigations revealed the membrane-active nature and endogenous reactive oxygen species (ROS) induction ability of these compounds. Finally, no detectable resistance was developed by the bacterial strains against this class of membrane-targeting antimicrobials.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Animais , Ácidos e Sais Biliares/farmacologia , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Biofilmes , Candida albicans , Bactérias , Mamíferos
6.
Bioact Mater ; 20: 519-527, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35846842

RESUMO

Facial amphiphilicity is an extraordinary chemical structure feature of a variety of antimicrobial peptides and polymers. Vast efforts have been dedicated to small molecular, macromolecular and dendrimer-like systems to mimic this highly preferred structure or conformation, including local facial amphiphilicity and global amphiphilicity. This work conceptualizes Facial Amphiphilicity Index (FAI) as a numerical value to quantitatively characterize the measure of chemical compositions and structural features in dictating antimicrobial efficacy. FAI is a ratio of numbers of charges to rings, representing both compositions of hydrophilicity and hydrophobicity. Cationic derivatives of multicyclic compounds were evaluated as model systems for testing antimicrobial selectivity against Gram-negative and Gram-positive bacteria. Both monocyclic and bicyclic compounds are non-antimicrobial regardless of FAIs. Antimicrobial efficacy was observed with systems having larger cross-sectional areas including tricyclic abietic acid and tetracyclic bile acid. While low and high FAIs respectively lead to higher and lower antimicrobial efficacy, in consideration of cytotoxicity, the sweet spot is typically suited with intermediate FAIs for each specific system. This can be well explained by the synergistic hydrophobic-hydrophobic and electrostatic interactions with bacterial cell membranes and the difference between bacterial and mammalian cell membranes. The adoption of FAI would pave a new avenue toward the design of next-generation antimicrobial macromolecules and peptides.

7.
Biomater Transl ; 3(2): 162-171, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105565

RESUMO

Compared with single-network hydrogels, double-network hydrogels offer higher mechanical strength and toughness. Integrating useful functions into double-network hydrogels can expand the portfolios of the hydrogels. We report the preparation of double-network metallopolymer hydrogels with remarkable hydration, antifouling, and antimicrobial properties. These cationic hydrogels are composed of a first network of cationic cobaltocenium polyelectrolytes and a second network of polyacrylamide, all prepared via radical polymerization. Antibiotics were further installed into the hydrogels via ion-complexation with metal cations. These hydrogels exhibited significantly enhanced hydration, compared with polyacrylamide-based hydrogels, while featuring robust mechanical strength. Cationic metallopolymer hydrogels exhibited strong antifouling against oppositely charged proteins. These antibiotic-loaded hydrogels demonstrated a synergistic effect on the inhibition of bacterial growth and antifouling of bacteria, as a result of the unique ion complexation of cobaltocenium cations.

8.
Front Microbiol ; 13: 934708, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935195

RESUMO

Lava caves, tubes, and fumaroles in Hawai'i present a range of volcanic, oligotrophic environments from different lava flows and host unexpectedly high levels of bacterial diversity. These features provide an opportunity to study the ecological drivers that structure bacterial community diversity and assemblies in volcanic ecosystems and compare the older, more stable environments of lava tubes, to the more variable and extreme conditions of younger, geothermally active caves and fumaroles. Using 16S rRNA amplicon-based sequencing methods, we investigated the phylogenetic distinctness and diversity and identified microbial interactions and consortia through co-occurrence networks in 70 samples from lava tubes, geothermal lava caves, and fumaroles on the island of Hawai'i. Our data illustrate that lava caves and geothermal sites harbor unique microbial communities, with very little overlap between caves or sites. We also found that older lava tubes (500-800 yrs old) hosted greater phylogenetic diversity (Faith's PD) than sites that were either geothermally active or younger (<400 yrs old). Geothermally active sites had a greater number of interactions and complexity than lava tubes. Average phylogenetic distinctness, a measure of the phylogenetic relatedness of a community, was higher than would be expected if communities were structured at random. This suggests that bacterial communities of Hawaiian volcanic environments are phylogenetically over-dispersed and that competitive exclusion is the main driver in structuring these communities. This was supported by network analyses that found that taxa (Class level) co-occurred with more distantly related organisms than close relatives, particularly in geothermal sites. Network "hubs" (taxa of potentially higher ecological importance) were not the most abundant taxa in either geothermal sites or lava tubes and were identified as unknown families or genera of the phyla, Chloroflexi and Acidobacteria. These results highlight the need for further study on the ecological role of microbes in caves through targeted culturing methods, metagenomics, and long-read sequence technologies.

9.
Commun Biol ; 5(1): 552, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672382

RESUMO

Chronic multisymptom illness (CMI) affects a subsection of elderly and war Veterans and is associated with systemic inflammation. Here, using a mouse model of CMI and a group of Gulf War (GW) Veterans' with CMI we show the presence of an altered host resistome. Results show that antibiotic resistance genes (ARGs) are significantly altered in the CMI group in both mice and GW Veterans when compared to control. Fecal samples from GW Veterans with persistent CMI show a significant increase of resistance to a wide class of antibiotics and exhibited an array of mobile genetic elements (MGEs) distinct from normal healthy controls. The altered resistome and gene signature is correlated with mouse serum IL-6 levels. Altered resistome in mice also is correlated strongly with intestinal inflammation, decreased synaptic plasticity, reversible with fecal microbiota transplant (FMT). The results reported might help in understanding the risks to treating hospital acquired infections in this population.


Assuntos
Guerra do Golfo , Veteranos , Idoso , Doença Crônica , Humanos , Inflamação/genética
10.
Environ Sci Technol ; 56(2): 896-906, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34983180

RESUMO

Bacterial extracellular polymeric substances (EPS) have been recently found to contribute most for metal removal in nanoenhanced bioremediation. However, the mechanism by which NPs affect EPS-metal interactions is not fully known. Here, Halomonas sp. was employed to explore the role of EPS after in vivo exposure to Cd/Pb and polyvinylpyrrolidone (PVP) coated iron oxide nanoparticles (IONPs, 20 mg L-1) for 72 h. Cd-IONPs produced the highest concentrations of EPS proteins (136.3 mg L-1), while Cd induced the most production of polysaccharides (241.0 mg L-1). IONPs increased protein/polysaccharides ratio from 0.2 (Cd) to 1.2 (Cd-IONPs). The increased protein favors the formation of protein coronas on IONPs surface, which would promote Cd adsorption during NP-metal-EPS interaction. FTIR analysis indicated that the coexistence of Cd and IONPs interacted with proteins more strongly than with polysaccharides. Glycosyl monomer analyses suggested mannose and glucose as target sugars for EPS complexation with metals, and IONPs reduced metal-induced changes in monosaccharide profiles. Protein secondary structures changed in all treatments, but we could not distinguish stresses induced by metals from those by IONPs. These findings provide greater understanding of the role of EPS in NP-metal-EPS interaction, providing a better underpinning knowledge for the application of NP-enhanced bioremediation.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Nanopartículas , Adsorção , Biodegradação Ambiental , Matriz Extracelular de Substâncias Poliméricas/química , Metais/análise
11.
Front Microbiol ; 13: 1099502, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36704570

RESUMO

Marine bacteria often exist in biofilms as communities attached to surfaces, like plastic. Growing concerns exist regarding marine plastics acting as potential vectors of pathogenic Vibrio, especially in a changing climate. It has been generalized that Vibrio vulnificus and Vibrio parahaemolyticus often attach to plastic surfaces. Different strains of these Vibrios exist having different growth and biofilm-forming properties. This study evaluated how temperature and strain variability affect V. parahaemolyticus and V. vulnificus biofilm formation and characteristics on glass (GL), low-density polyethylene (LDPE), polypropylene (PP), and polystyrene (PS). All strains of both species attached to GL and all plastics at 25, 30, and 35°C. As a species, V. vulnificus produced more biofilm on PS (p ≤ 0.05) compared to GL, and biofilm biomass was enhanced at 25°C compared to 30° (p ≤ 0.01) and 35°C (p ≤ 0.01). However, all individual strains' biofilm biomass and cell densities varied greatly at all temperatures tested. Comparisons of biofilm-forming strains for each species revealed a positive correlation (r = 0.58) between their dry biomass weight and OD570 values from crystal violet staining, and total dry biofilm biomass for both species was greater (p ≤ 0.01) on plastics compared to GL. It was also found that extracellular polymeric substance (EPS) chemical characteristics were similar on all plastics of both species, with extracellular proteins mainly contributing to the composition of EPS. All strains were hydrophobic at 25, 30, and 35°C, further illustrating both species' affinity for potential attachment to plastics. Taken together, this study suggests that different strains of V. parahaemolyticus and V. vulnificus can rapidly form biofilms with high cell densities on different plastic types in vitro. However, the biofilm process is highly variable and is species-, strain-specific, and dependent on plastic type, especially under different temperatures.

12.
MethodsX ; 8: 101550, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34754817

RESUMO

Metals being released into the environment are posing an increasing risk to both environments and public health. Developing improved approaches to remove these metals from the environment is urgent. A current publication discovered that metal bioremediation was significantly improved by nanoparticles (NPs), and the remediation duration was shortened. However, there is no relevant method for the preparation and evaluation of this novel idea. Hence, we developed this method for bacteria in-situ-EPS (Extracellular Polymeric Substances) cultivation, bacteria sub-cellular fractionation, and metal determinations in cultivating solution, EPS and different fractions of bacteria to evaluate metal removal by the combination of NPs and bacteria, including (1) the enhancement of metal bioremediation by NPs, (2) the influence of NPs on bacteria growth and metal toxicity alleviation, (3) the ability of EPS to adsorb metals and the influence of NPs on the EPS metal adsorption, (4) the contribution of bacteria to metal removal in different part, the effects of NPs on metal distribution patterns in bacteria, and the role of NPs in this process.•The design and experimental procedure for the evaluation of metal removal by combing bacteria and NPs.•In-situ EPS cultivation and separation in the study of bioremediation for metals.

13.
Biomater Sci ; 9(21): 7237-7246, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34596174

RESUMO

This paper reports antimicrobial metallopolymers containing biodegradable polycaprolactone as the backbone with boronic acid and cobaltocenium as the side chain. While boronic acid promotes interactions with bacterial cells via boronolectin with lipopolysaccharides, cationic cobaltocenium facilitates the unique complexation with anionic ß-lactam antibiotics. The synergistic interactions in these metallopolymer-antibiotic bioconjugates were evidenced by re-sensitized efficacy of penicillin-G against four different Gram-negative bacteria (E. coli, P. vulgaris, P. aeruginosa and K. pneumoniae). The degradability of the polyester backbone was validated through tests under physiological pH (7.4) and acidic pH (5.5) or under enzymatic conditions. These metallopolymers exhibited time-dependent uptake and reduction of cobalt metals in different organs of mice via in vivo absorption, distribution, metabolism, and excretion (ADME) tests.


Assuntos
Antibacterianos , Escherichia coli , Animais , Ácidos Borônicos , Camundongos , Testes de Sensibilidade Microbiana , Poliésteres
14.
Bioconjug Chem ; 32(8): 1411-1430, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34319073

RESUMO

Bacterial resistance to antimicrobial compounds is a growing concern in medical and public health circles. Overcoming the adaptable and duplicative resistance mechanisms of bacteria requires chemistry-based approaches. Engineered nanoparticles (NPs) now offer unique advantages toward this effort. However, most in situ infections (in humans) occur as attached biofilms enveloped in a protective surrounding matrix of extracellular polymers, where survival of microbial cells is enhanced. This presents special considerations in the design and deployment of antimicrobials. Here, we review recent efforts to combat resistant bacterial strains using NPs and, then, explore how NP surfaces may be specifically engineered to enhance the potency and delivery of antimicrobial compounds. Special NP-engineering challenges in the design of NPs must be overcome to penetrate the inherent protective barriers of the biofilm and to successfully deliver antimicrobials to bacterial cells. Future challenges are discussed in the development of new antibiotics and their mechanisms of action and targeted delivery via NPs.


Assuntos
Antibacterianos/administração & dosagem , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Biofilmes/efeitos dos fármacos , Portadores de Fármacos/química , Nanopartículas/química , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Sistemas de Liberação de Medicamentos , Farmacorresistência Bacteriana/efeitos dos fármacos , Humanos
15.
NanoImpact ; 21: 100283, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-35559775

RESUMO

Bacteria efficiently take up small organic molecules and ions. However, the internalization of particulate forms, specifically nanoparticles (NPs) has been understudied and is a newly-emerging area of interest. However, determination of true cellular internalization is challenging owing to the difficulty of separating the aqueous phase from bacteria-associated NPs and, more importantly, of differentiating between internalized and NPs sorbed on bacteria surfaces. In this work, we developed and validated an extraction method which can operationally estimate internalization of metal NPs into Gram-negative bacteria. The outer cell membrane and cell wall, collectively called the periplasm, was successfully removed from bacteria using ethylenediaminetetraacetic acid (EDTA) at an optimized exposure period and concentration, without lysis of bacteria. This was followed by standard digestion and metal measurements. Verification of each step of the methodology was conducted by assessing both cellular and metal behavior. Specifically, the combined approaches of live/dead staining of bacteria, optical density measurements, transmission electron microscopy (TEM) and metal analyses of the supernatant indicated that the method operationally separated externally-sorbed NPs from those internalized actually localized within the bacterial cytoplasm. However, this new method is ideally used alongside other methods in a multi-method approach, to provide improved data quality. Therefore, it should be used with CSLM, FACS, TEM and other available methods.


Assuntos
Antibacterianos , Nanopartículas Metálicas , Antibacterianos/uso terapêutico , Bactérias , Parede Celular , Bactérias Gram-Negativas , Nanopartículas Metálicas/uso terapêutico
16.
J Glob Antimicrob Resist ; 22: 811-817, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32653724

RESUMO

OBJECTIVES: The aim of this study was to examine how the concentrated delivery of less effective antibiotics, such as the ß-lactam penicillin G, by linkage to nanoparticles (NPs), could influence the killing efficiency against various pathogenic bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) and other multidrug resistant (MDR) strains. METHODS: The ß-lactam antibiotic penicillin G (PenG) was passively sorbed to fluorescent polystyrene NPs (20nm) that were surface-functionalized with carboxylic acid (COO--NPs) or sulfate groups (SO4--NPs) to form a PenG-NP complex. Antimicrobial activities of PenG-NPs were evaluated against Gram-negative and Gram-positive bacteria, including antibiotic resistant strains. Disc diffusion, microdilution assays and live/dead staining were performed for antibacterial assessments. RESULTS: The results showed that bactericidal activities of PenG-NP complexes were statistically significantly (P<0.05) enhanced against Gram-negative and Gram-positive strains, including MRSA and MDR strains. Fluorescence imaging verified that NPs comigrated with antibiotics throughout clear zones of MIC agar plate assays. The increased bactericidal abilities of NP-linked antibiotics are hypothesized to result from the greatly increased densities of antibiotic delivered by each NP to a given bacterial cell (compared with solution concentrations of antibiotic), which overwhelms the bacterial resistance mechanism(s). CONCLUSIONS: As a whole, PenG-NP complexation demonstrated a remarkable activity against different pathogenic bacteria, including MRSA and MDR strains. We term this the 'grenade hypothesis'. Further testing and development of this approach will provide validation of its potential usefulness for controlling antibiotic-resistant bacterial infections.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Antibacterianos/farmacologia , Sistemas de Liberação de Medicamentos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana
17.
Trends Microbiol ; 28(6): 436-444, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32001099

RESUMO

Quorum sensing (QS), a type of chemical communication, allows bacteria to sense and coordinate activities in natural biofilm communities using N-acyl homoserine lactones (AHLs) as one type of signaling molecule. For AHL-based communication to occur, bacteria must produce and recognize the same signals, which activate similar genes in different species. Our current understanding of AHL-QS suggests that signaling between species would arise randomly, which is not probable. We propose that AHL-QS signaling is a mutable and adaptable process, within limits. AHLs are highly-conserved signals, however, their corresponding receptor proteins (LuxR) are highly variable. We suggest that both flexibility and adaptation occur among receptor proteins, allowing for complex signaling networks to develop in biofilms over time.


Assuntos
Bactérias/metabolismo , Percepção de Quorum/fisiologia , 4-Butirolactona/metabolismo , Acil-Butirolactonas/metabolismo , Aliivibrio fischeri , Ambulâncias , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
ACS Appl Mater Interfaces ; 12(19): 21221-21230, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31939652

RESUMO

New antimicrobial agents are needed to address ever-increasing antimicrobial resistance and a growing epidemic of infections caused by multidrug resistant pathogens. We design nanostructured antimicrobial copolymers containing multicyclic natural products that bear facial amphiphilicity. Bile acid based macromolecular architectures of these nanostructures can interact preferentially with bacterial membranes. Incorporation of polyethylene glycol into the copolymers not only improved the colloidal stability of nanostructures but also increased the biocompatibility. This study investigated the effects of facial amphiphilicity, polymer architectures, and self-assembled nanostructures on antimicrobial activity. Advanced nanostructures such as spheres, vesicles, and rod-shaped aggregates are formed in water from the facial amphiphilic cationic copolymers via supramolecular interactions. These aggregates were particularly interactive toward Gram-positive and Gram-negative bacterial cell membranes and showed low hemolysis against mammalian cells.


Assuntos
Antibacterianos/farmacologia , Ácidos e Sais Biliares/farmacologia , Polietilenoglicóis/farmacologia , Polímeros/farmacologia , Tensoativos/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/toxicidade , Apoptose/efeitos dos fármacos , Ácidos e Sais Biliares/síntese química , Ácidos e Sais Biliares/toxicidade , Eritrócitos/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Nanoestruturas/química , Nanoestruturas/toxicidade , Polietilenoglicóis/síntese química , Polietilenoglicóis/toxicidade , Polímeros/síntese química , Polímeros/toxicidade , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Tensoativos/síntese química , Tensoativos/toxicidade
19.
Sci Total Environ ; 704: 135378, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31806322

RESUMO

Polyvinylpyrrolidone (PVP) coated iron oxide nanoparticles (NPs) were used to explore the potential for improved bioremediation of metals by interaction with the Gram-negative bacterium Halomonas sp. The combined approach improved metal removal and shortened metal remediation times (approx. 100% removal of Pb after 24 h, of Cd after 48 h) compared with bacteria- or NP-only controls. NPs also demonstrated the ability to reduce metal toxicity to bacteria and enhance bacterial growth efficiencies in an additive manner. Cd, Pb, and Fe (from NPs) were analyzed in the following operationally-defined components: EPS, cell-wall, cell membrane, and cytoplasmic fractions; EPS was most important in metal removal. There was a significant promotion of Cd intracellular transportation, but not Pb, by NPs. Reduced Pb internalization may have resulted from EPS acting as an uptake barrier coupled with an effective efflux system of Halomonas sp. as a resistance mechanism. In addition, the majority of Fe was present in bacterial membranes, compared with Cd or Pb, suggesting that bacteria may take up iron oxide NPs as a potential nutrient while recognizing Cd or Pb as toxicants.


Assuntos
Recuperação e Remediação Ambiental/métodos , Metais , Poluentes do Solo , Bactérias , Biodegradação Ambiental , Nanotecnologia
20.
Adv Healthc Mater ; 8(6): e1800854, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30480381

RESUMO

Bacterial infection has evolved into one of the most dangerous global health crises. Designing potent antimicrobial agents that can combat drug-resistant bacteria is essential for treating bacterial infections. In this paper, a strategy to graft metallopolymer-antibiotic bioconjugates on gold nanoparticles is developed as an antibacterial agent to fight against different bacterial strains. Thus, these nanoparticle conjugates combine various components in one system to display enhanced bactericidal efficacy, in which small sized nanoparticles provide high surface area for bacteria to contact, cationic metallopolymers interact with the negatively charged bacterial membranes, and the ß-lactam antibiotics' sterilzation capabilities are improved via evading intracellular enzymolysis by ß-lactamase. This nanoparticle-based antibiotic-metallopolymer system exhibits an excellent broad-spectrum antibacterial effect, particularly for Gram-negative bacteria, due to the synergistic effect of multicomponents on the interaction with bacteria.


Assuntos
Antibacterianos/química , Ouro/química , Nanopartículas Metálicas/química , Polímeros/química , Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Microscopia Confocal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...